Spatiotemporal Controllability and Environmental Risk Assessment of Genetically Engineered Gene Drive Organisms from the Perspective of European Union Genetically Modified Organism Regulation

Integr Environ Assess Manag. 2020 Sep;16(5):555-568. doi: 10.1002/ieam.4278. Epub 2020 May 27.

Abstract

Gene drive organisms are a recent development created by using methods of genetic engineering; they inherit genetic constructs that are passed on to future generations with a higher probability than with Mendelian inheritance. There are some specific challenges inherent to the environmental risk assessment (ERA) of genetically engineered (GE) gene drive organisms because subsequent generations of these GE organisms might show effects that were not observed or intended in the former generations. Unintended effects can emerge from interaction of the gene drive construct with the heterogeneous genetic background of natural populations and/or be triggered by changing environmental conditions. This is especially relevant in the case of gene drives with invasive characteristics and typically takes dozens of generations to render the desired effect. Under these circumstances, "next generation effects" can substantially increase the spatial and temporal complexity associated with a high level of uncertainty in ERA. To deal with these problems, we suggest the introduction of a new additional step in the ERA of GE gene drive organisms that takes 3 criteria into account: the biology of the target organisms, their naturally occurring interactions with the environment (biotic and abiotic), and their intended biological characteristics introduced by genetic engineering. These 3 criteria are merged to form an additional step in ERA, combining specific "knowns" and integrating areas of "known unknowns" and uncertainties, with the aim of assessing the spatiotemporal controllability of GE gene drive organisms. The establishment of assessing spatiotemporal controllability can be used to define so-called "cut-off criteria" in the risk analysis of GE gene drive organisms: If it is likely that GE gene drive organisms escape spatiotemporal controllability, the risk assessment cannot be sufficiently reliable because it is not conclusive. Under such circumstances, the environmental release of the GE gene drive organisms would not be compatible with the precautionary principle (PP). Integr Environ Assess Manag 2020;16:555-568. © 2020 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

Keywords: Environmental risk assessment; Genetically engineered gene drive organism; Next generation effects; Spatiotemporal control.

Publication types

  • Review

MeSH terms

  • Environmental Monitoring*
  • European Union
  • Gene Drive Technology*
  • Organisms, Genetically Modified
  • Risk Assessment*