Skip to main content

Genetically Modified Trees Expressing Genes for Insect Pest Resistance

  • Chapter
Book cover Tree Transgenesis

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • American Phytopatological Society (2001) Genetically modified insect resistant corn: implications for disease management. Available at URL: http://www.scisoc.org/feature/BtCorn/Top.html.

  • Andow DA, Hutchison WD (1998) Bt-corn resistance management. In: Mellon M, Rissler J (eds) Now or never: serious new plans to save a natural pest control. Union Concerned Sci, Washington, DC, pp 19–66.

    Google Scholar 

  • Augustin S, Carré G, Courtin C, Dubois V, Génissel A, Lorme P, Wenes AL, Réjasse A, Pilate G, Leplé JC, Buorguet D (2004) Transgenic poplar and the poplar leaf beetle: state-of-the-art on the risk of evolution of insect resistance. FAO-IPC 22nd Session, Santiago, Chile, 29 Nov-2 Dec 2004.

    Google Scholar 

  • Bachelor JS (2000) Bollgard cotton performance expectations for North Carolina producers. Carolina Cotton News, North Carolina State University. Available at URL: http//www.cropsci.nesu.edu./ccn/2000/ccn-00–3d.htm.

  • Balestrazzi A, Confalonieri M, Allegro G, Fogher C, Albertini A, Galizzi A, Cella R (1994) Regeneration of Populus nigra transgenic plants containing genes for insect pest resistance. Abstracts of the 8th international congress of plant tissue and cell culture, Florence (Italy), 12–17 June 1994.

    Google Scholar 

  • Bates SL, Zhao J-Z, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nat Biotech 23:57–62.

    Article  CAS  Google Scholar 

  • Brodway RM, Duffey SS (1986) The effect of dietary protein on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J Insect Physiol 32:827–833.

    Article  Google Scholar 

  • Burdon RD (1999) Risk-management issues for genetically modified forest trees. N Z J For Sci 29:375–390.

    Google Scholar 

  • Campbell MM, Brunner AM, Jones HM, Strauss SH (2003) Forestry’s fertile crescent: the application of biotechnology to forest trees. Plant Biotechnol J 1:141–154.

    Article  PubMed  CAS  Google Scholar 

  • Confalonieri M, Allegro G, Delledonne M (1997) Transgenic black poplars expressing different soybean protease inhibitors genes. Abstracts of joint meeting of the IUFRO working parties “Somatic cell genetics and molecular genetics of trees”, Québec City, 12–16 Aug 1997, pp 04–07–04–06.

    Google Scholar 

  • Confalonieri M, Allegro G, Balestrazzi A, Fogher C, Delledonne M (1998) Regeneration of Populus nigra transgenic plants expressing a Kunitz proteinase inhibitor (KTi3) gene. Mol Breed 4:137–145.

    Article  CAS  Google Scholar 

  • Confalonieri M, Balestrazzi A, Bisoffi S, Carbonera D (2003) In vitro culture and genetic engineering of Populus spp.: synergy for forest tree improvement. Plant Cell Tissue Org Cult 72:109–138.

    Article  CAS  Google Scholar 

  • Cornu D, Leplè J-C, Bonadè-Bottino M, Ross A, Augustin S, Delplanque A, Jouanin L, Pilate G (1996) Expression of a proteinase inhibitor and a Bacillus thuringiensis endotoxin in transgenic poplars. In: Ahuja MR, Boerjan W, Neale DB (eds) Somatic cell genetics and molecular genetics of trees. Kluwer Academic Publ, Dordrecht, The Netherlands, pp 131–136.

    Google Scholar 

  • Dandekar AM, McGranahan GH, Vail PV, Uratsu SL, Leslie CA, Tebbets JS, Hoffman DJ (1994) Low levels of expression of cryIA(c) sequence of Bacillus thuringiensis in transgenic walnut. Plant Sci 96:151–162.

    Article  CAS  Google Scholar 

  • Dandekar AM, McGranahan GH, Vail PV, Uratsu SL, Leslie CA, Tebbets JS (1998) High levels of expression of full-length cryIA(c) gene from Bacillus thuringiensis in transgenic somatic walnut embryos. Plant Sci 131:181–193.

    Article  CAS  Google Scholar 

  • de Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect word. Trends Genet 17:193–199.

    Article  PubMed  Google Scholar 

  • Delledonne M, Belenghi B, Confalonieri M (1998) Genetic transformation of white poplar with different cysteine proteinase inhibitor genes. Abstracts of the Ixth international congress of plant tissue and cell culture, Jerusalem, 14–19 June 1998.

    Google Scholar 

  • Delledonne M, Allegro G, Belenghi B, Balestrazzi A, Picco F, Levine A, Zelasco S, Calligari P, Confalonieri M (2001) Transformation of white poplar (Populus alba L) with a novel Arabidopsis thaliana cysteine proteinase inhibitor gene and analysis of insect pest resistance. Mol Breed 7:35–42.

    Article  CAS  Google Scholar 

  • Dowd PF, Lagrimini LM, Herms DA (1998) Differential leaf resistance to insect of transgenic sweetgum (Liquidambar styraciflua) expressing tobacco anionic peroxidase. Cell Mol Life Sci 54:712–720.

    Article  PubMed  CAS  Google Scholar 

  • Ellis DD, McCabe DE, McInnis S, Ramachandran R, Russel DR, Wallace KM, Martinell BJ, Roberts DR, Raffa KF, McCown BH (1993) Stable transformation of Picea glauca by particle acceleration. Biotechnology 11:84–89.

    Article  CAS  Google Scholar 

  • Ellis DD, Rintamaki-Strait J, Francis K, Kleiner K, Raffa K, McCown B (1996) Transgene expression in spruce and poplar: from the lab to the field. In: Ahuja MR, Boerjan W, Neale DB (eds) Somatic cell genetics and molecular genetics of trees. Kluwer Academic Publ, Dordrecht, The Netherlands, pp 159–163.

    Google Scholar 

  • FAO (2004) Preliminary review of biotechnology in forestry, including genetic modification. Forest genetic resources working paper FGR/59E. Forest Resources Development Service, Forest Resources Division. Rome, Italy (www.fao.org/forestry/fgr).

  • Felsot AS (2000) Insecticidal genes, part 2. Human health hoopla. Agric Environ News, Issue 168, 5 pp.

    Google Scholar 

  • Ferry N, Edwards MG, Gatehouse JA, Gatehouse AMR (2004) Plant-insect interactions: molecular approaches to insect resistance. Curr Opin Biotechnol 15:155–161.

    Article  PubMed  CAS  Google Scholar 

  • Francis KE (1996) Genetic transformation and transgene analysis of hybrid poplar NM6 (P. nigra ¥ P. maximowiczii). Madison WI USA, Department of Horticulture, University of Wisconsin, MS Thesis.

    Google Scholar 

  • Gao J, Zhang F, Hou D, Wu B, Zhang S, Zhao X (2003) Structure of arthropod community in stands of transgenic hybrid poplar 741. J Beijing For Univ 25:62–64.

    Google Scholar 

  • Génissel A, Viard F, Bourguet D (2000) Population genetics of Chrysomela tremulae: a first step towards management of transgenic Bacillus thuringiensis poplars Populus tremula ¥ P. tremuloides. Hereditas 133:85–93.

    Article  PubMed  Google Scholar 

  • Génissel A, Leplè J-C, Millet N, Augustin S, Jouanin L, Pilate G (2003) High tolerance against Chrysomela tremulae of transgenic poplar plants expressing a synthetic cry3Aa gene from Bacillus thuringiensis ssp. tenebrionis. Mol Breed 1:103–110.

    Article  Google Scholar 

  • Gill RIS, Ellis BE, Isman MB (2003) Tryptamine-induced resistance in tryptophan decarboxylase transgenic poplar and tobacco plants against their specific herbivores. J Chem Ecol 29:779–793.

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Lim MA, Litz RE (2004) Genetic transformation of perennial tropical fruits. In Vitro Cell Dev Biol Plant 40:442–449.

    Article  Google Scholar 

  • Gould F (2000) Testing Bt refuge strategies in the field. Nat Biotechnol 18:266–267.

    Article  PubMed  CAS  Google Scholar 

  • Grace LJ, Charity JA, Gresham B, Kay N, Walter C (2005) Insect-resistant transgenic Pinus radiata. Plant Cell Rep 24:103–111.

    Article  PubMed  CAS  Google Scholar 

  • Halpin C (2005) Gene stacking in transgenic plant-the challenge for 21st century plant biotechnology. Plant Biotech J 3:141–155.

    Article  CAS  Google Scholar 

  • Haq SK, Atif SM, Khan RH (2004) Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection. Arch Biochem Biophys 431:145–159.

    Article  PubMed  CAS  Google Scholar 

  • Harcourt RL, Kyozuka J, Floyd RB, Bateman KS, Tanaka H, Decroocq V, Llewellyn DJ, Zhu X, Peacock WJ, Dennis ES (2000) Insect- and herbicide-resistant transgenic eucalypts. Mol Breed 6:307–315.

    Article  CAS  Google Scholar 

  • Heitz T, Geoffroy P, Fritig B, Legrand M (1999) The PR-6 family: proteinase inhibitors in plant-microbe and plant-insect interactions. In: Datta SK, Muthukrishan S (eds) Pathogenesis-related proteins in plants. CRC Press, Boca Raton, FL, pp 131–155.

    Google Scholar 

  • Heuchelin SA, Jouanin L, Klopfenstein NB, McNabb HS (1997) Potential of proteinase inhibitors for enhanced resistance to Populus arthropod and pathogen pests. In: Klopfenstein NB, Chun YW, Kim MS, Ahuia MR (eds) Micropropagation, genetic engineering, and molecular biology of Populus. Gen tech Rep RM-GRT–297, USDA, Fort Collins, CO, pp 173–177.

    Google Scholar 

  • Hilbeck A, Baumgartner M, Freid PM, Bigler F (1998) Effects of Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla carnea. Environ Entomol 27:480–487.

    Google Scholar 

  • Hodgson J (1999) Monarch Bt corn paper questioned. Nat Biotechnol 17:627.

    Article  PubMed  CAS  Google Scholar 

  • Hu JJ, Tian YC, Han YF, Li L, Zhang BE (2001) Field evaluation of insect-resistant transgenic Populus nigra trees. Euphytica 121:123–127.

    Article  Google Scholar 

  • James DJ, Passey AJ, Webster AD, Barbara DJ, Viss P, Dandekar AM, Uratsu SL (1993) Transgenic apples and strawberries: advances in transformation, introduction of genes for insect resistance and field studies of tissue cultured plants. Acta Horticult 336:179–184.

    Google Scholar 

  • James RR (1997) Utilizing a social ethic toward the environment in assessing genetically engineered insect resistance in trees. Agr Hun Values 14:237–249.

    Article  Google Scholar 

  • Jongsma MA, Stiekema WJ, Bosch D (1996) Combatting inhibitor-insensitive proteases of insect pests. TIBTECH 14:331–333.

    CAS  Google Scholar 

  • Kang H, Hall RB, Heuchelin SA, McNabb HS, Mize CW, Hart ER (1997) Transgenic Populus: in vitro screening for resistance to cottonwood leaf beetle (Coleoptera: Chrysomelidae). Can J For Res 27:943–944.

    Article  Google Scholar 

  • Kleiner KW, Ellis DD, McCown BH and Raffa KF (1995) Field evaluation of transgenic poplar expressing a Bacillus thuringiensis cryIA(a) endotoxin gene against forest tent caterpillar and gypsy moth following winter dormancy. Environ Entomol 24:1358–1364.

    Google Scholar 

  • Klopfenstein NB, McNabb HS, Hart EL, Hall RB, Hanna RD, Heuchelin SA, Allen KK, Shi N-Q, Thornburg RW (1993) Transformation of Populus hybrids to study and improve pest resistance. Silvae Genet 42:86–90.

    Google Scholar 

  • Knowles BH, Dow JAT (1993) The crystal delta-endotoxins of Bacillus thuringiensis-models for their mechanism of action on the insect gut. BioEssays 15:469–476.

    Article  CAS  Google Scholar 

  • Koiwa H, Bressan RA, Hasegawa PM (1997) Regulation of protease inhibitors and plant defense. Trends Plant Sci 2:379–384.

    Article  Google Scholar 

  • Krattiger AF (1996) Insect resistance in crops: a case study of Bacillus thguringiensis (Bt) and its transfer to developing countries. ISAAA Briefs no 2. ISAAA, Ithaca, NY, 42 pp.

    Google Scholar 

  • Leplé JC, Bonadé Bottino M, Augustin S, Pilate G, Dumanois Le Tan V, Delplanque A, Cornu D, Jouanin L (1995) Toxicity to Chrysomela tremulae (Coleoptera: Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor. Mol Breed 1:319–328.

    Article  Google Scholar 

  • Leplé JC, Pilate G, Jouanin L (1999) Transgenic Poplar Trees (Populus Species). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 44. Transgenic trees. Springer, Berlin Heidelberg New York, pp 215–244.

    Google Scholar 

  • Losey J, Raynor L, Carter ME (1999) Transgenic pollen harms monarch larvae. Nature 399:214.

    Article  PubMed  CAS  Google Scholar 

  • Lövei GL, Arpaia S (2005) The impact of transgenic plants on natural enemies: a critical review of laboratory studies. Ent Exp Appl 114:1–14.

    Article  Google Scholar 

  • Markwick NP, Christeller JT, Docherty LC, Lilley CM (2001) Insecticidal activity of avidin and streptavidin against four species of pest Lepidoptera. Entomol Exp Appl 98:59–66.

    Article  CAS  Google Scholar 

  • Markwick NP, Docherty LC, Phung MM, Lester MT, Murray C, Yao J-L, Mitra DS, Cohen D, Beuning LL, Kutty-Amma S, Christeller JT (2003) Transgenic tobacco and apple plants expressing biotin-binding proteins are resistant to two cosmopolitan insect pests, potato tuber and lightbrown apple moth, respectively. Transgenic Res 12:671–681.

    Article  PubMed  CAS  Google Scholar 

  • McCaffrey AR (1998) Resistance to insecticides in heliothine Lepidoptera: a global view. Philos Trans R Soc Lond B353:1735–1750.

    Article  Google Scholar 

  • McCown BH, McCabe DE, Russel DR, Robison DJ, Barton KA, Raffa KF (1991) Stable transformation of Populus and incorporation of pest resistance by electrical discharge particle acceleration. Plant Cell Rep 9:590–594.

    Article  CAS  Google Scholar 

  • Meilan R, Ma C, Cheng S, Eaton JA, Miller LK, Crockett RP, DiFazio SP, Strauss SH (2000) High levels of Roundup® and leaf-beetle resistance in genetically engineered hybrid cottonwoods. In: Blatner KA, Johnson JJ (eds) Hybrid poplars in the pacific northwest: culture, commerce and capability. Washington State University Cooperative Extension, Pullman, WA, pp 29–38.

    Google Scholar 

  • Pappinen A, Keinonen-Mettala K, Susi A, Lemmetyinen J, von Weissenberg K (1995) Association of chitinases and protease inhibitors in resistance to diseases and insects in birch. Abstracts of the IUFRO XXth world congress, Tampere, 6–12 Aug 1995.

    Google Scholar 

  • Pittendrigh BR, Gaffney PJ, Huesing JE, Onstad DW, Roush RT, Murdock LL (2004) “Active” refuges can inhibit the evolution of resistance in insects towards transgenic insect-resistant plants. J Theor Biol 231:461–474.

    Article  PubMed  CAS  Google Scholar 

  • Pretty J (2001) The rapid emergence of genetic modification in world agriculture: contested risks and benefits. Environ Conserv 28(3):248–262.

    Google Scholar 

  • Raffa KF (1989) Genetic engineering of trees to enhance resistance to insects: evaluating the risk of biotype evolution and secondary pest outbreak. BioSci 39:524–534.

    Article  Google Scholar 

  • Raffa KF, Kleiner KW, Ellis DD, McCown BH (1997) Environmental risk assessment and deployment strategies for genetically engineered insect-resistant Populus. In: Klopfenstein NB, Chun YW, Kim MS, Ahuia MR (eds) Micropropagation, genetic engineering, and molecular biology of Populus. Gen Tech Rep RM-GRT-297. USDA, Fort Collins CO, pp 249–263.

    Google Scholar 

  • Rautner M (2001) Designer trees. Biotechnol Dev Monitor 44/45:2–7.

    Google Scholar 

  • Robison DJ, McCown BH, Raffa KF (1994) Responses of gypsy moth and forest tent caterpillar to transgenic poplar containing a Bacillus thuringiensis d-endotoxin gene. Environ Entomol 23:1030–1041.

    Google Scholar 

  • Romanò B, Rodolfi M, Sala F, Basso B (2004) Defending apple rootstock against the cockchafer Melolontha melolontha L. Proceedings of the XLVIIIth Italian Society of Agricultural Genetics-SIFV-SIGA Joint Meeting, Lecce, 15–18 Sep 2004.

    Google Scholar 

  • Ryan CA (1990) Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopathol 28:425–449.

    Article  CAS  Google Scholar 

  • Saxena D, Stotzsky G (2001) Fate and effects of the insecticidal toxins from Bacillus thuringiensis in soils. Inf Sys Biotechnol News Rep, May 2001.

    Google Scholar 

  • Schuler TH, Poppy GM, Kerry BR, Denholm I (1998) Insect-resistant transgenic plants. TIBTECH 16:168–175.

    CAS  Google Scholar 

  • Schuler TH, Poppy GM, Kerry BR, Denholm I (1999) Potential side effects of insect-resistant transgenic plants on arthropod natural enemies. TIBTECH 17:210–216.

    CAS  Google Scholar 

  • Shelton AM (2004) Risks and benefits of agricultural biotechnology. In: Ahmed F (ed) Testing of genetically modified organisms in food. Haworth Press, Binghamton NY, pp 1–53.

    Google Scholar 

  • Shelton AM, Zhao J-Z, Roush RT (2002) Economic, ecological, food safety and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881.

    Article  PubMed  CAS  Google Scholar 

  • Shin DI, Podila GK, Huang Y, Karnosky DF (1994) Transgenic larch expressing genes for herbicide and insect resistance. Can J For Res 24:2059–2067.

    Article  Google Scholar 

  • Singer MC, Parmesan C (1993) Sources of variation in patterns of plant-insect interactions association. Nature 361:251–253.

    Article  Google Scholar 

  • Speight MR, Wainhouse D (1989) Ecology and management of forest insects. Clarendon Press, Oxford.

    Google Scholar 

  • Tang W, Newton RJ (2003) Genetic transformation of conifers and its application in forest biotechnology. Plant Cell Rep 22:1–15.

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Tian Y (2003) Transgenic loblolly pine (Pinus taeda L.) plants expressing a modified d-enotoxin gene of Bacillus thuringiensis with enhanced resistance to Dendrolimus punctatus Walker and Crypyothelea formosicola Staud. J Exp Bot 54:835–844.

    Article  PubMed  CAS  Google Scholar 

  • Taylor G (2002) Populus: Arabidopsis for forestry. Do we need a model tree? Ann Bot 90:681–689.

    Article  PubMed  CAS  Google Scholar 

  • Tian YC, Li TY, Mang KQ, Han YF, Li L (1993) Insect tolerance of transgenic Populus nigra plants transformed with Bacillus thuringiensis toxin gene. Chin J Biotech 9:219–227.

    CAS  Google Scholar 

  • US EPA, Off Pestic Programs, Biopesticide Pollut Prev Div (2000) Biopesticides registration document; preliminary risks and benefits sections; Bacillus thuringiensis plant pesticides. US EPA, Washington, DC.

    Google Scholar 

  • Vacher C, Bourguet D, Rousset F, Chevillon C, Hochberg ME (2003) Modelling the spatial configuration of refuges for a sustainable control of pests: a case study of Bt cotton. J Evol Biol 16:378–387.

    Article  PubMed  CAS  Google Scholar 

  • Vettori C, Paffetti D, Stotzsky G, Giannini R (2003) Genetic exchange between Bacillus thuringiensis subsp. kurstaki and the indigenous microbiota in soils of Sardinia. “Tree Biotechnology 2003” IUFRO meeting, 7–12 June 2003, Umeå, Sweden.

    Google Scholar 

  • Walter C, Carson SD, Menzies MI, Richardson T, Carson M (1998) Review: application of biotechnology to forestry-molecular biology of conifers. World J Microbiol Biotech 14:321–330.

    Article  Google Scholar 

  • Wang GJ, Castiglione S, Chen Y, Li L, Han YF, Tian YC, Dean WG, Han YN, Mang KQ, Sala F (1996) Poplar (Populus nigra L.) plants transformed with a Bacillus thuringiensis toxin gene: insecticidal activity and genomic analysis. Trans Res 5:289–301.

    Article  CAS  Google Scholar 

  • Wang J, Constabel CP (2004) Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria). Planta 220:87–96.

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (2000) Safety aspects of genetically modified foods of plant origin. Rep joint FAO/WHO expert consulation on foods derived from biotechnology, 29 May–2 June 2000.

    Google Scholar 

  • Wu NF, Sun Q, Yao B, Fan YL, Rao HY, Huang MR, Wang MX (2000) Insect-resistant transgenic poplar expressing AaIT gene. Sheng Wu Gong Cheng Xue Bao 16:129–133.

    PubMed  CAS  Google Scholar 

  • Yang ZN, Ingelbrecht IL, Louzada E, Skaria M, Mirkov TE (2000) Agrobacterium-mediated transformation of the commercially important grapefruit cultivar Rio red (Citrus paradisi Macf.). Plant Cell Rep 19:1203–1211.

    Article  CAS  Google Scholar 

  • Zheng J, Liang H, Gao B, Wang Y, Tian Y (2000) Selection and insect resistance of transgenic hybrid poplar 741 carrying two insect-resistant genes. Sci Silv Sin 36:13–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Balestrazzi, A., Allegro, G., Confalonieri, M. (2006). Genetically Modified Trees Expressing Genes for Insect Pest Resistance. In: Fladung, M., Ewald, D. (eds) Tree Transgenesis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32199-3_12

Download citation

Publish with us

Policies and ethics